If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-9H^2-15H+100
We move all terms to the left:
-(-9H^2-15H+100)=0
We get rid of parentheses
9H^2+15H-100=0
a = 9; b = 15; c = -100;
Δ = b2-4ac
Δ = 152-4·9·(-100)
Δ = 3825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3825}=\sqrt{225*17}=\sqrt{225}*\sqrt{17}=15\sqrt{17}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{17}}{2*9}=\frac{-15-15\sqrt{17}}{18} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{17}}{2*9}=\frac{-15+15\sqrt{17}}{18} $
| 2y-20=y-1 | | x+48=13x-48 | | c4−5=4 | | 133=2x-7 | | 6v+1=9v-5 | | 3u=4u-14 | | 5x+3=3(5x-4)-10x | | 16w+10=4w+34 | | 5×(x+4)=-7×(x-4)) | | x+8=2*x | | -10-5(2-3p)=3(p-4)-16 | | 4^x-5^x+1=-109 | | 6x+4=4x=10 | | 2x^2-19x=10 | | z+17=18 | | 78=x+15 | | 7x−3=3x+2 | | 125=x+70 | | 5/x=6/30 | | -5x+12=-36 | | -5m+12=-36 | | 4x-3.25=12.75 | | 11-4x=32-18x+12 | | A=7n+10 | | 34134132x=1 | | 3x^2+4x−7=0 | | 3x2+4x−7=0 | | -7x-10-15x=-22x+15 | | 5^(3x-7)+11=16 | | X-2(31-3x)=13 | | 10a^2-500=0 | | 81^(x-16)=9^(3x) |